Chemistry

Chapter 19 - Acid \& Bases (properties, calculating quantities)

Name
Date \qquad Block \qquad

Review

- If the anion ends with -ide and contains a \qquad .
- Hydro \qquad ic acid
- If the anion ends with -ate
- \qquad ic acid
- If the anion ends with -ite
- \qquad ous acid
- Examples
- HCl
- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- HClO_{2}

Properties of Acids

- pH is \qquad than 7
- Turns blue litmus paper \qquad
- Tastes \qquad
- Reacts with active \qquad to produce H_{2}
- Reacts with \qquad
- Neutralize \qquad

Properties of Bases

- pH is \qquad than 7
- Turns red litmus paper \qquad
- Tastes \qquad
- Feel \qquad
- Neutralize \qquad

Acid/Base Definitions

- There are \qquad definitions. We will focus on Arrhenius Acids/Bases.
- Acids are \qquad producers.
- Examples: $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$
- Bases are \qquad producers.
- Examples: $\mathrm{NaOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{CaCO}_{3}, \mathrm{NH}_{3}$
- Measure of the \qquad of an acid
- pH scale ranges from \qquad
- A number above 7 is considered \qquad
- A number below 7 is considered \qquad
- A number at 7 is \qquad

Calculating pH

- To calculate pH from the concentration of hydrogen $\left[\mathrm{H}^{+}\right]$:
- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- To calculate the concentration of hydrogen $\left[\mathrm{H}^{+}\right]$from the pH :

$$
\circ\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

- The concentration is listed as \qquad .
- Example 1: What is $\left[\mathrm{H}^{+}\right]$if $\mathrm{pH}=9.9$?
- Example 2: $\left[\mathrm{H}^{+}\right]$in an acid solution is $1.5 \times 10^{-3} \mathrm{M}$. What is the pH of the solution?
- Example 3: What is the pH of a solution with hydrogen ion

$$
\text { concentration of } 4.2 \times 10^{-10} \mathrm{M} \text { ? Is it acidic or basic? }
$$

pOH

- Less than 7 is \qquad
- Greater than 7 is \qquad
- For the same substance, \qquad

Calculating pOH

- To calculate pOH from the concentration of hydroxide ions [OH^{-}]:
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- To calculate the concentration of hydroxide $\left[\mathrm{OH}^{-}\right]$from the pOH :
- $\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
- The concentration is listed as \qquad .
- Example 1: What is $\left[\mathrm{OH}^{-}\right]$if $\mathrm{pOH}=2.3$? Is it acidic or basic?

Summary

- Acidic solutions have higher $\left[\mathrm{H}^{+}\right]$than $\left[\mathrm{OH}^{-}\right]$.
- Basic solutions have higher $\left[\mathrm{OH}^{-}\right]$than $\left[\mathrm{H}^{+}\right]$.
- Neutral solutions have equal $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$.

